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Abstract. Given a finite set of linearly independent quantum states, an observer who examines
a single quantum system may sometimes identify its state with certainty. However, unless these
quantum states are orthogonal, there is a finite probability of failure. A complete solution is
given to the problem of optimal distinction of three states, having arbitrary prior probabilities
and arbitrary detection values. A generalization to more than three states is outlined.

1. Non-orthogonal quantum signals

Quantum information theory is an emerging science, which combines two traditional
disciplines: quantum mechanics and classical information theory. This subject has many
fascinating potential applications for the transmission and processing of information, and
yields results that cannot be achieved by classical means. A simple example is the use
of quanta that have been prepared according to one of a finite set of states as signals for
the transmission of information. The possibility of using non-orthogonal quantum states,
which has no classical analogue, is especially interesting for its potential applications to
cryptography (that is, for communication security) [1].

An observer, faced with such a set of signals whose prior probabilities are known, may
follow various strategies. The approach favoured by information theorists is to maximize
the mutual information that can be acquired in the detection process [2]: each event is
analysed in a way from which it is possible to deduce definite posterior probabilities for the
emission of the various signals, and the observer’s aim is to reduce as much as possible the
Shannon entropy of the ensemble of signals. On the other hand, communication engineers
attempt to guess what the signal actually was and their aim is to miminize the number of
errors [3]. Cryptographers, whose supply of signals is essentially unlimited but for whom
security is paramount, do not want any error at all but on the other hand they are ready to
lose some fraction of the signals. The latter strategy is the one that will be investigated in
this article.

The case of just two non-orthogonal signals is quite simple and well known [4–6].
Recently, Chefles [7] investigated the case ofN linearly independent signals, and obtained
some partial results. In the following, we give a complete treatment of the case of three
signals. Our method can readily be generalized to a larger number of signals (but explicit
calculations become tedious).

† E-mail address: peres@photon.technion.ac.il
‡ E-mail address: terno@physics.technion.ac.il

0305-4470/98/347105+07$19.50c© 1998 IOP Publishing Ltd 7105



7106 A Peres and D R Terno

In the next section, we introduce a set of positive operator valued measures which
describe generalized quantum measurements. (These are more general than the projection
valued measures corresponding to the standard, von Neumann type of measurement.) An
explicit algorithm is developed to ensure the positivity of the required matrices.

Optimization (namely, how to maximize the information gain) is discussed in section 3.
We consider the possibility that the various signals may have different ‘values’. The
information gain is defined as the expected average of the values of detected signals (this
includes the possibility that some types of signals are never identified). It is then shown
in section 4 that even if a measurement fails to identify with certainty a signal, it is still
usually possible to attribute to the various signals posterior probabilities, so that the observer
acquires at least some mutual information on the emitted signals. Finally, section 5 briefly
discusses an extension of this work to spaces with more than three dimensions.

2. Positive operator valued measures

Consider, in a three-dimensional complex vector space, three linearly independent
normalized state vectors,u1, u2, and u3 (we are using here the standard notation for
Euclidean vectors, so no confusion may arise). These vectors have the physical meaning of
signals, and they are, in general, not orthogonal. They occur with probabilitiesp1, p2, and
p3, respectively. In each measurement the observer should either identify with certainty
one of these signals or obtain an inconclusive answer (the latter will be labelled 0, meaning
‘no answer’). The objective is to design a procedure that minimizes the probability of the
inconclusive answer. More generally, we may attribute different valuesCj to the various
outcomes (for example, rare signals with smallpj may have larger values than frequent
signals) and our aim is to maximize the expected gain of information.

Note that the number of outcomes of the measuring process is larger than the
dimensionality of the vector space. Therefore we need ‘generalized measurements’ that
are represented by positive operator valued measures (POVM) [8]. Namely, we have to
construct four positive semi-definite matricesAj , that satisfy

3∑
j=0

Aj = 1 (1)

where1 is the unit matrix. Three of these matrices correspond to the three input signals,
and the remaining one to an inconclusive answer. It is easily proved [2] that optimalAj
may be taken as matrices of rank 1. However, the optimal solution may not be unique, and
higher rank matrices may also be optimal, as we shall see below.

By analogy with the well known solution for the case of two input vectors [4–6], let us
define three auxiliary (unnormalized) vectorsvj as follows

v1 = (u2× u3)
∗ (2)

and cyclic permutations. We thus have

〈vi ,uj 〉 = δij [u1u2u3] (3)

where [u1u2u3] stands for the triple product of the input vectors (that is, the determinant
of their components, in any basis).

We then construct with thevj three POVM matrices, which correspond to outcomes of
experiments that give a definite identification of an input signal:

Aj = kj |vj 〉〈vj | (4)
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where thekj are non-negative numbers that still have to be determined. Indeed, the
probability that thej th outcome results from theith input is

Pj = 〈ui ,Ajui〉 = kj |〈ui ,vj 〉|2. (5)

This vanishes ifj 6= i. Therefore, observing thej th outcome implies that the input was
uj . This result occurs with probability

Pj = kj |[u1u2u3]|2. (6)

Note that the input statesuj must be linearly independent in order to unambiguously
distinguish any one of them. It will be convenient for future use to introduce the notation

T = |[u1u2u3]|2. (7)

This can also be written asT = [v1v2v3], or

T = 1+ s12s23s31+ s13s32s21− |s12|2− |s23|2− |s31|2 (8)

wheresij = 〈ui ,uj 〉.
Finally, the remaining POVM matrix, which indicates an inconclusive answer, is given

by

A0 = 1−
3∑

j=1

Aj . (9)

The probability of the inconclusive answer is

P0 =
3∑

j=1

pj 〈uj ,A0uj 〉 = 1− T
3∑

j=1

kjpj . (10)

We naturally want thekj to be as large as possible in order to increase the detection
probabilities but their values are bounded above by the demand of positivity ofA0. Recall
that the necessary and sufficient conditions for the positivity of a matrix are the positivity
of all the diagonal elements and diagonal subdeterminants, including the determinant of the
entire matrix:

detA0 > 0. (11)

In the present case, this last condition is the decisive one that actually determines the domain
of acceptable values ofkj . This is intuitively seen as follows: when allkj vanish,A0 ≡ 1,
which has only positive eigenvalues. As we gradually increase thekj , one of the eigenvalues
of A0 will vanish and then become negative. When it vanishes, the determinant vanishes
too (because it is equal to the product of eigenvalues) and this gives the boundary of the
domain of legalkj . The surface det(A0) = 0 consists of several disjoint parts. The role
of other positivity conditions is to eliminate (in practice, to confirm the elimination of) the
irrelevant parts of that surface.

Explicitly, the condition det(A0) = 0 can be written as

1−
3∑

j=1

|vj |2kj + T (k1k2+ k2k3+ k3k1)− T 2k1k2k3 = 0. (12)

A simple way of obtaining equation (12) is to choose a basis in our vector space, such
that the vector components are as simple as possible. Let the first basis vector beu1 itself,
and the second one be a linear combination ofu1 and u2, with real coefficients. This
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Figure 1. Domain of positivity ofA0.

determines the third basis vector up to a phase. We can choose phases so thatu3 has at
most one complex coefficient. We thus obtain

u1 = (1, 0, 0) u2 = (a2, b2, 0) u3 = (a3, b3eiβ, c3). (13)

Recall that all these vectors are normalized. It is now easy to write det(A0) explicitly in
terms of the parameters in equation (13), and then to express these parameters in terms of
the various vectors. The resulting surface, det(A0) = 0, is sketched in figure 1, for the
following choice of parameters:

u1 = (1, 0, 0) u2 = (0.6, 0.8, 0) u3 = (0.5, 0.5+ 0.5i, 0.5). (14)

The surface given by equation (12) intersects eachkj axis atkj = |vj |−2. Note that,
in the first octant, this surface is everywhere convex. This can be seen as follows. Let us
cut it by one of the planeskj = constant. The intersection is a rectangular hyperbola with
asymptotes parallel to the remaining axes. For example, if we cut the surface (12) by the
planek3 = constant, the asymptotek1→∞ is explicitly obtained by dividing equation (12)
by k1 and then settingk1→∞. This gives

−|v1|2+ T (k2+ k3)− T 2k2k3 = 0. (15)

It is then easily seen that for any fixedk3 such that 0< k3 < |v3|−2, the resultingk2 is
positive. This means that, in the planek3 = constant, the asymptotek1 → ∞ cuts the
positive part of thek2 axis. The same result holds for any other choice of section parallel
to one of the coordinate planes. This proves the convexity of the surface in figure 1: all
these sections are convex segments of rectangular hyperbolas.
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3. Optimization

Finally, we are left with the problem of finding the set ofkj that maximize the information
gain. The latter is

G =
∑
j

CjPj = T
∑
j

Cjpjkj (16)

whereCj is the ‘value’ of signaluj and use was made of equation (5). Define, for brevity,

Bj = Cjpj . (17)

All points of the plane

3∑
j=1

Bjkj = G/T (18)

with kj > 0, lead to the same information gainG, provided that these points belong to the
domain of positivity ofA0. The largest value ofG can be obtained as follows.

Let us imagine that we start with a plane
∑
Bjkj = X, with large positiveX, so that

there is no contact between that plane and the relevant part of the surface (12). As we
gradually decreaseX, the plane will reach a point where it is tangent to that surface (thanks
to its convexity). This happens at the point where the gradient of the left-hand side of (12) is
parallel to the vector{Bj }. If the point of contact lies in the first octant, it gives the optimal
solution. It may happen, however, that at this point of contact one of thekj is negative,
and therefore that point is not a valid solution. In that case, we further decreaseX, until
a contact point occurs on one of the coordinate planes (that is, one of thekj vanishes), or
even at one of the vertices (two of them vanish).

For example, when allpj = 1
3, and allCj = 1, the optimal result is obtained when

k1 = 2.4189,k2 = 0, andk3 = 0.6719. This result means that we sacrifice the possibility
of detecting signalu2 in order to get the lowest probability for the inconclusive answer,
as may be seen from equation (10). In the present case, we obtainP0 = 0.8386. On the
other hand, if we give different values to the signals, such asC1 = 0.8, C2 = 1.2, and
C3 = 1, the optimal result is obtained withk1 = 2.083,k2 = 0.2902, andk3 = 0.2129. The
probability of obtaining an inconclusive answer then is slightly higher:P0 = 0.8626.

4. Inconclusive answers still carry some information

An inconclusive answer is not completely useless (except in special, highly symmetric
cases). For example, ifu1 is orthogonal tou2 andu3, and these are not orthogonal to each
other, thenv1 is parallel tou1, andv2 andv3 lie in theu2u3 plane. TheA0 matrix is of
rank 1: A0 = |w〉〈w|, with w in theu2u3 plane. In such a case, the signalu1 is always
detected with certainty, while an inconclusive result means: eitheru2 or u3 (with known
posterior probabilities, as explained below).

In general, for arbitraryuj , the optimalA0 is a matrix of rank 2 which can be written
in terms of its eigenvalues and eigenvectors:

A0 = λm|m〉〈m| + λn|n〉〈n|. (19)

Each one of the two terms on the right-hand side is by itself a legitimate POVM element,
so that there can actually be two distinct inconclusive outcomes. Let us label themm and
n.
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Suppose that the outcome of a generalized measurement turns out to bem. The prior
probability for that result, if the input wasuj , is

Pmj = pjλm|〈m,uj 〉|2. (20)

By Bayes’s theorem, the posterior probability for inputuj upon observing outputm is [8]

Qjm = Pmj
/ 3∑

i=1

Pmi. (21)

The observer’s final ignorance level, after receiving outputm, is given by the Shannon
entropy,

Hm = −
3∑

j=1

Qjm lnQjm. (22)

This need not be, but often is, less than the initial entropy,

Hinit = −
3∑

j=1

pj lnpj (23)

so that some information has been gained, even though the result is inconclusive.

5. Higher dimensional space

Finally, let us briefly outline how the above results can be generalized toN signals (N > 3).
Consider theN th order matrix formed by the components of all the input vectors, in any
basis. Instead of the triple product [u1u2u3], we now have the determinant of that matrix.
Vector productsvj such as those in equation (2) become outer products of anyN − 1
signal states. Their components, in any basis, are the appropriate cofactors in the above
determinant. The argument leading to equation (12) remains essentially the same and we
now obtain a(N−1)-dimensional hypersurface in theN -dimensionalk-space. It is plausible
that this hypersurface is convex in the first orthant (i.e. hyper-octant) ink-space. A formal
proof of this conjecture is a straightforward but tedious exercise in differential geometry
(perhaps a more clever proof can be found). Optimization then proceeds as in section 3, by
considering a family of parallel hyperplanes

∑
Bjkj = X.

There are now many possibilities of partial answers. For example, if the signal states
uj can be divided into two (or more) mutually orthogonal subspaces, it is possible, in a
first step, to determine unambiguously the subspace to which each signal belongs. Then, a
second step is to try to identify individual non-orthogonal signals within a given subspace.

An interesting problem is how to utilize the resulting mixed information with some of
the signals fully identified and others only partly identified. For example, if we have two
mutually orthogonal subspaces and in each one two non-orthogonal states, an individual
state encodes two bits but a subspace is still worth one bit, plus some amount of mutual
(probabilistic) information. Further investigation is needed to clarify this issue.
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